The Proper Forcing Axiom, Prikry forcing, and the Singular Cardinals Hypothesis
نویسنده
چکیده
The purpose of this paper is to present some results which suggest that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. What will be proved is that a form of simultaneous reflection follows from the Set Mapping Reflection Principle, a consequence of PFA. While the results fall short of showing that MRP implies SCH, it will be shown that MRP implies that if SCH fails first at κ then every stationary subset of S κ+ = {α < κ : cf(α) = ω} reflects. It will also be demonstrated that MRP always fails in a generic extension by Prikry forcing.
منابع مشابه
Ultrafilters and Large Cardinals
This paper is a survey of basic large cardinal notions, and applications of large cardinal ultrafilters in forcing. The main application presented is the consistent failure of the singular cardinals hypothesis. Other applications are mentioned that involve variants of Prikry forcing, over models of choice and models of determinacy. My talk at the Ultramath conference was about ultrafilters and ...
متن کاملProper forcing, cardinal arithmetic, and uncountable linear orders
In this paper I will communicate some new consequences of the Proper Forcing Axiom. First, the Bounded Proper Forcing Axiom implies that there is a well ordering of R which is Σ1-definable in (H(ω2),∈). Second, the Proper Forcing Axiom implies that the class of uncountable linear orders has a five element basis. The elements are X, ω1, ω∗ 1 , C, C ∗ where X is any suborder of the reals of size ...
متن کاملAn Iteration Model violating the Singular Cardinals Hypothesis
Models of Set Theory showing exotic behaviour at singular cardinals are usually constructed via forcing. The archetypical method is Prikry-Forcing [Pr1970], which has been generalized in various ways, as for example by Gitik and Magidor [GiMa1992]. It was observed early that Prikry generic sequences can be obtained as successive critical points in an iteration of the universe V by a normal ultr...
متن کاملTopics in Set Theory
Axiomatics. The formal axiomatic system of ordinary set theory (ZFC). Models of set theory. Absoluteness. Simple independence results. Transfinite recursion. Ranks. Reflection principles. Constructibility. [4] Infinitary combinatorics. Cofinality. Stationary sets. Fodor’s lemma. Solovay’s theorem. Cardinal exponentiation. Beth and Gimel functions. Generalized Continuum Hypothesis. Singular Card...
متن کاملThe consistency strength of choiceless failures of SCH
We determine exact consistency strengths for various failures of the Singular Cardinals Hypothesis (SCH) in the setting of the Zermelo-Fraenkel axiom system ZF without the Axiom of Choice (AC). By the new notion of parallel Prikry forcing that we introduce, we obtain surjective failures of SCH using only one measurable cardinal, including a surjective failure of Shelah’s pcf theorem about the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 140 شماره
صفحات -
تاریخ انتشار 2006